Personal Information

Principal Investigator

Email:alberto.macho@cemps.ac.cn
Personal Web:


Research Direction

Molecular Plant-Bacteria Interactions 


Research Unit

Alberto Macho

Personal Profile

EDUCATION 
 
1999-2004    Bachelor of Sciences (Biology)
          University of Málaga, Spain.
 
2004-2006    Master's Degree in Biotechnology
          University of Málaga, Spain.
 
2005-2010    PhD in Biology (cum laude)
          Department of Cell Biology, Genetics and Physiology, Genetics Area, University of Málaga, Spain. 
 
 
RESEARCH EXPERIENCE 
 
2011-2014       Postdoctoral researcher ,The Sainsbury Laboratory, Norwich, UK.
 
2015-Present  Principal Investigator, Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China. 


Research Work

The Molecular Plant-Bacteria Interactions (MPBI) group was established by Dr. Alberto Macho in 2015. The overall goal of the group has been deciphering the molecular basis of biotic stress caused by bacterial pathogens, and the mechanisms of plant disease resistance. The group is interested in understanding alterations in plant signaling, metabolism, hormonal balances, and proteomic changes, underlying both immune responses and bacterial virulence activities.


The plant-bacteria interactions field has developed massively in the past 25 years, while most of the studies and discoveries so far have used relatively simple bacterial models (for example, bacterial pathogens directly in contact with leaf cells). Therefore, to employ an innovative approach, the MPBI group focuses on studying the interaction between plants and the bacterial pathogen Ralstonia solanacearum (hereafter, Ralstonia). Ralstonia is one of the most important pathogenic bacteria worldwide according to its scientific and economic relevance (Mansfield et al, 2010). Strains within the Ralstonia species complex are the causal agents of devastating diseases in a broad range of economically important crop plants, such as bacterial wilt disease in diverse Solanaceae plants (such as tomato, eggplant, or pepper), brown rot (a.k.a. bacterial wilt) disease in potato, or Moko/blood disease in banana and plantain (Denny, 2006). Due to its persistence, lethality, worldwide distribution, and wide host range, Ralstonia is considered one of the most destructive plant pathogens, and a serious threat to food security. Moreover, Ralstonia has a very complex lifestyle: it lives in the soil, penetrates the plants through the roots, and reaches the vascular system, where it colonizes the whole plant before causing plant wilt and death (Xue et al, 2020). This makes it an excellent system to study biotic stress in a complex spatiotemporal manner, with the potential to allow the identification and characterization of novel relevant aspects of biotic stress. Despite these factors, the interaction between plants and Ralstonia had been poorly characterized, probably due to the complexity of the system.

 

Since 2015, the MPBI group has initiated and followed successfully several lines of research. Most of our projects are based on the use of bacterial virulence factors (type-III effectors from Ralstonia) as probes to study plant cellular functions. We have also developed several projects to understand the mechanisms of plant defense against bacterial wilt disease caused by Ralstonia, in order to strengthen the applicability of our research, with the final goal of developing sustainable solutions to fight against bacterial diseases in agricultural systems.


Main Achievements

 


Publications

86. Zhao A., Xian L., Franco Ortega S., Yu G., and Macho A.P. A bacterial effector manipulates plant metabolism, cell death, and immune responses via independent mechanisms. New Phytologist (2024) online ahead of print, https://doi.org/10.1111/nph.19899

 

85. Yu G., Zhang L., Hao X., Chen Y., Liu X., del Pozo J.C., Zhao C., Lozano-Duran R., and Macho A.P. Cell wall-mediated root development is targeted by a soil-borne bacterial pathogen to promote infection. Cell Reports (2024) 43(5):114179. https://doi.org/10.1016/j.celrep.2024.114179

 

84. de Pedro-Jove, R., Corral J., Rocafort M., Puigvert M., Waqar F., Vandecaveye C., Macho A.P., Balsalobre C., Coll N.S., Orellano E., and Valls M. Gene expression changes throughout the life cycle allow a bacterial plant pathogen to persist in diverse environmental habitats. PLoS Pathogens (2023) 19:e1011888. https://doi.org/10.1371/journal.ppat.1011888

 

83. Macho A.P. Walking down the phosphorylation path to root immunity. Cell Host & Microbe (2023) 31:1953-1955. https://doi.org/10.1016/j.chom.2023.11.013

 

82. Yu G., Zhang L., Wang K., and Macho A.P. Inoculation of Arabidopsis seedlings with Ralstonia solanacearum in sterile agar plates. STAR Protocols (2023) 4(3):102474. https://doi.org/10.1016/j.xpro.2023.102474

 

81. Kim B., Yu W., Kim H., Dong Q., Choi S., Prokchorchik M., Macho A.P., Sohn K.H., and Segonzac C. A plasma membrane nucleotide-binding leucine-rich receptor mediates the recognition of the Ralstonia pseudosolanacearum effector RipY in Nicotiana benthamiana. Plant Communications (2023) 4, 100640, http://doi.org/10.1016/j.xplc.2023.100640

 

80. Chen Y., Zhao A., Wei Y., Mao Y., Zhu J-K., and Macho A.P. GmFLS2 contributes to soybean resistance against Ralstonia solanacearum. New Phytologist (2023) 240, 17-22, https://doi.org/10.1111/nph.19111

 

79. Zhu X., Fang D., Li D., Zhang J., Jiang H., Guo L., He Q., Zhang T., Macho A.P., Wang E., Shen Q-H. Wang Y., Zhou J-M., Ma W., and Qiao Y. Phytophthora sojae boosts host trehalose accumulation to acquire carbon and initiate infection. Nature Microbiology (2023) 8, 1561-1573, https://doi.org/10.1038/s41564-023-01420-z

 

78. Kim B., Kim I., Yu W., Li M., Kim H., Ahn Y.J., Sohn K.H., Macho A.P., and Segonzac C. The Ralstonia pseudosolanacearum effector RipE1 is recognized at the plasma membrane by NbPtr1, Nicotiana benthamiana homolog of Pseudomonas tomato race 1. Molecular Plant Pathology (2023) 24, 1312-1318, http://doi.org/10.1111/mpp.13363

 

77. Wang K., Yu W., Yu G., Zhang L., Xian L., Wei Y., Perez-Sancho J., Xue H., Rufian J.S., Zhuang H., Kwon C., and Macho A.P. A bacterial type III effector targets host vesicle-associated membrane proteins. Molecular Plant Pathology (2023) 22, 655-664, http://doi.org/10.1111/mpp.13360

 

76. Demirjian C., Razavi N., Yu G., Mayjonade B., Zhang L., Lonjon F., Chardon F., Carrere S., Gouzy J., Genin S., Macho A.P., Roux F., Berthome R., and Vailleau F. An atypical NLR gene confers bacterial wilt susceptibility in Arabidopsis. Plant Communications (2023), 100607. doi: 10.1016/j.xplc.2023.100607

 

75. Rosas-Diaz T., Cana-Quijada P., Wu M., Du H., Fernandez-Barbero G., Macho A.P., Solano R., Castillo A.G., Xang X-W., Lozano-Duran R., and Bejarano E.R. The transcription factor JAZ8 interacts with the C2 protein from geminiviruses and limits the viral infection in Arabidopsis. Journal of Integrative Plant Biology (2023) 65:1826-1840, https://doi.org/10.1111/jipb.13482

 

74. Cai J., Jiang Y., Ritchie E., Macho A.P.*, Yu F.*, and Wu D.* Manipulation of plant metabolism by pathogen effectors: More than just food. (* co-corresponding authors) FEMS Microbiology Reviews (2023) 47:fuad007. https://doi.org/10.1093/femsre/fuad007

 

73. Yu G.*, Derkacheva M.*#, Rufian J. S.*, Brillada C., Kowarschik K., Jiang S., Derbyshire P., Ma M., DeFalco T. A., Morcillo R., Stransfeld L., Wei Y., Zhou J-M., Menke F., Trujillo M., Zipfel C.#, and Macho A.P.# (* co-first authors; # co-corresponding authors). The Arabidopsis E3 ubiquitin ligase PUB4 regulates BIK1 and is targeted by a bacterial type-III effector. EMBO Journal (2022) e107257 https://doi.org/10.15252/embj.2020107257

 

72. Macho A., Wang P., and Zhu J-K. Modification of the susceptibility gene TaPsIPK1 - a win-win for wheat disease resistance and yield. Stress Biology 2, 40 (2022) doi: 10.1007/s44154-022-00060-3

 

71. Lv S., Yang Y., Yu G., Peng L., Zheng S., Singh S.K., Vilchez J.I., Kaushal R., Zi H., Yi D., Wang Y., Luo S., Wu X., Zuo Z., Huang W., Liu R., Du J., Macho A.P., Tang K., Zhang H. Dysfunction of histone demethylase IBM1 in Arabidopsis causes autoimmunity and reshapes the root microbiome. ISME Journal (2022) 16, 2513-2524. doi: 10.1038/s41396-022-01297-6.

 

70. Dindas J., DeFalco T.A., Yu G., Zhang L., David P., Bjornson M., Thibaud M.C., Custodio V., Castrillo G., Nussaume L., Macho A.P., and Zipfel C. Direct inhibition of phosphate transport by plant immune signaling. Current Biology (2022) 32(2):488-495.e5. doi: 10.1016/j.cub.2021.11.063

 

69. Xian L., Yu G., and Macho A.P. The GABA transaminase GabT is required for full virulence of Ralstonia solanacearum in tomato. MicroPublications Biology (2021) 2021:10.17912 https://doi.org/10.17912/micropub.biology.000478

 

68. Wang L., Yu G., Macho A.P., and Lozano-Duran R. Split-luciferase complementation imaging assay to study protein-protein interactions in Nicotiana benthamiana. Bio-protocol (2021) 11(23):e4237. doi: 10.21769/BioProtoc.4237.

 

67. Bender K.W., Couto D., Kadota Y., Macho A.P., Sklenar J., Derbyshire P., Bjornson M., DeFalco T. A., Petriello A., Farre M.F., Schwessinger B., Ntoukakis V., Stransfeld L., Jones A.M.E., Menke F.L.H., and Zipfel C. Activation loop phosphorylation of a non-RD receptor kinase initiates plant innate immune signaling. PNAS (2021) 118(38):e2108242118. doi: 10.1073/pnas.2108242118.

 

66. Wang Y., Zhao A., Morcillo R.J.L., Yu G., Xue H., Rufian, J.S., Sang Y., and Macho A.P. A bacterial effector uncovers a novel pathway involved in tolerance to bacterial wilt disease. Molecular Plant (2021) 30:S1674-2052(21)00159-3. doi: 10.1016/j.molp.2021.04.014.

 

65. Rufian J.S., Rueda-Blanco J., Lopez-Marquez D., Macho A.P., Beuzon C.R., and Ruiz-Albert J. The bacterial effector HopZ1a acetylates MKK7 to suppress plant defense responses in Arabidopsis. New Phytologist (2021) 231, 1138-1156. doi: 10.1111/nph.17442.

 

64. Wang Y., Liu X., Yu G., and Macho A.P. Tomato Stem Injection for the Precise Assessment of Ralstonia solanacearum Fitness in Planta. Bio-protocol (2021) 11(16): e4134. doi: 10.21769/BioProtoc.4134.

 

63. Ruiz-Lopez N., Pérez-Sancho J., Esteban Del Valle A., Haslam R.P., Vanneste S., Catalá R., Perea-Resa C., Van Damme D., García-Hernández S., Albert A, Vallarino J., Lin J., Friml J., Macho A.P., Salinas J., Rosado A., Napier J.A., Amorim-Silva V., and Botella M.A. Synaptotagmins at the endoplasmic reticulum-plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress. Plant Cell (2021) 4:koab122. doi: 10.1093/plcell/koab122.

 

62. Li Z., Luo X., Ou Y., Jiao H., Peng L., Fu X., Macho A.P., Liu R., and He Y. JASMONATE-ZIM DOMAIN proteins engage Ploycomb chromatin modifiers to negatively modulate Jasmonate signalling in Arabidopsis. Molecular Plant (2021) 14(5):732-747. doi: 10.1016/j.molp.2021.03.001.

 

61. de Pedro-Jove R., Sebastia P., Puigvert M., Macho A.P., Monteiro J.S., Coll N.S., Setubal J.C., and Valls M. Ralstonia solanacearum gene expression profiling at different potato infection stages. BMC Genomics (2021) 22(1):170. doi: 10.1186/s12864-021-07457-w.

 

60. Yu W. and Macho A.P. A Fast and Easy Method to Study Ralstonia solanacearum Virulence upon Transient Gene Expression or Gene Silencing in Nicotiana benthamiana Leaves. Bio-protocol (2021) 11(15): e4116. doi: 10.21769/BioProtoc.4116.

 

59. Yu G., Xian L., Zhuang H., and Macho A.P. SGT1 is not required for bacterial PAMP-triggered immunity. Molecular Plant Pathology (2021) 22(1):145-150. https://doi.org/10.1111/mpp.13012

 

58. Ho Plagaro T., Morcillo R., Tamayo-Navarrete M.I., Huertas-Ruz R., Molinero-Rosales N., Lopez-Raez J.A., Haidour A., Macho A.P., and Garcia-Garrido J.M. DWARF14‐LIKE2 regulates arbuscule hyphal branching during arbuscular mycorrhizal symbiosis. New Phytologist (2021) 229(1):548-562. https://doi.org/10.1111/nph.16938

 

57. Yu G., Xian L., Xue H., Yu W., Rufian J., Sang Y., Morcillo R., Wang Y., and Macho A.P. A bacterial effector protein prevents MAPK-mediated phosphorylation of SGT1 to suppress plant immunity. PLoS Pathogens (2020) 16(9): e1008933. https://doi.org/10.1371/journal.ppat.1008933

 

56. Wei Y., Balaceanu A., Rufian J., Segonzac C., Zhao A., Morcillo R., and Macho A.P. An immune receptor complex evolved in soybean to perceive a polymorphic bacterial flagellin. Nature Communications (2020) 11:3763 https://doi.org/10.1038/s41467-020-17573-y

 

55. Xian L.#, Yu G.#, Wei Y., Rufian J.S., Li Y., Zhuang H., Xue H., Morcillo R.J.L., and Macho A.P. A bacterial effector protein hijacks plant metabolism to support pathogen nutrition. Cell Host & Microbe (2020) 28:548-557.e7. https://doi.org/10.1016/j.chom.2020.07.003

 

54. Hao X, Lozano-Duran R.*, and Macho A.P.* Insights Into the Root Invasion by the Plant Pathogenic Bacterium Ralstonia solanacearum. Plants (2020) 9, 516.

 

53. Wang X., Ren M., Liu D., Zhang D., Zhang C., Lang Z., Macho A.P.*, Zhang M.,* and Zhu J.K.* Large-scale eQTL identification in Arabidopsis reveals novel candidate regulators of immune responses and other processes. Journal of Integrative Plant Biology (2020), 62:1469-1484. https://doi.org/10.1111/jipb.12930 (* Co-corresponding authors)

 

52. Lee E., Santana B.V.N., Samuels E., Benitez-Fuente F., Corsi E., Botella M.A., Perez-Sancho J., Vanneste S., Friml J., Macho A.P., Alves-Azevedo A., and Rosado A. Rare Earth Elements induce cytoskeleton-dependent and PI4P-associated rearrangement of SYT1/SYT5 ER-PM contact site complexes. Journal of Experimental Botany (2020), 71:3986-3998. https://doi.org/10.1093/jxb/eraa138

 

51. Wang P., Hsu C-C., Du Y., Zhu P., Zhao C., Fu X., Zhang C., Paez J.S., Macho A.P., Tao W.A., and Zhu J-K. Mapping Proteome-Wide Targets of Protein Kinases in Plant Stress Responses. PNAS (2020) 117:3270-3280. https://doi.org/10.1073/pnas.1919901117

 

50. Sang Y. #, Yu W. #, Zhuang H., Wei Y., Derevnina L., Yu G., Luo J., and Macho A.P. Intra-strain elicitation and suppression of plant immunity by Ralstonia solanacearum type-III effectors in Nicotiana benthamiana. Plant Communications (2020) 1, 100025. https://doi.org/10.1016/j.xplc.2020.100025

 

49. Morcillo R., Zhao A., Tamayo-Navarrete M.I., García-Garrido J.M., and Macho A.P. A versatile method for tomato root transformation followed by inoculation with Ralstonia solanacearum allows straightforward genetic analysis for the study of bacterial wilt disease. Journal of Visualized Experiments (2020) 157, e60302. doi:10.3791/60302

 

48. Morcillo RJL., Singh SK., He D., An G., Vilchez JI., Tang K., Yuan F., Sun Y., Shao C., Zhang S., Yang Y., Liu X., Dang Y., Wang W., Gao J., Huang W., Lei M., Song C-P., Zhu J-K., Macho AP., Pare PW., and Zhang H. Diacetyl determines plant-bacteria relation via phosphate-dependent modulation of plant immunity. EMBO Journal (2020) 39(2):e102602. https://doi.org/10.15252/embj.2019102602

 

47. Garnelo-Gomez B., Zhang D., Rosas-Diaz T., Wei Y., Macho A.P., and Lozano-Duran R. The C4 protein from Tomato yellow leaf curl virus can broadly interact with plant receptor-like kinases. Viruses (2019) 31;11. https://doi.org/10.3390/v11111009

 

46. Rubio L., Diaz-Garcia J., Amorim-Silva V., Macho A.P., Botella M. A., and Fernandez J.A. ZosmaNRT2 encodes the putative sodium dependent high-affinity nitrate transporter of Zostera marina L. International Journal of Molecular Sciences (2019) 26;20(15). https://doi.org/10.3390/ijms20153650

 

45. Sabbagh C. R. R., Carrère S., Lonjon F., Vailleau F., Macho A.P., Genin S., and Peeters N. Pangenomic type III effector database of the plant pathogenic Ralstonia spp. PeerJ (2019) 7:e7346 https://doi.org/10.7717/peerj.7346

 

44. Duan J., Lee K. P., Dogra V., Zhang S., Liu K., Caceres-Moreno C., Lv S., Xing W., Kato Y., Sakamoto W., Liu R., Macho A. P. and Kim C. Impaired PSII proteostasis promotes retrograde signaling via salicylic acid. Plant Physiology (2019) 180:2182-2197. doi: 10.1104/pp.19.00483.

 

43. Amorim-Silva V., García-Moreno A., Castillo A.G., Lakhssassi N., Esteban del Valle A., Pérez-Sancho J., Li Y., Posé D., Pérez-Rodriguez J., Lin J., Valpuesta V., Borsani O., Zipfel C., Macho A.P., Botella M.A. TTL proteins scaffold brassinosteroid signaling components at the plasma membrane to optimize signal transduction in Arabidopsis. The Plant Cell (2019) 31:1807-1828. doi: 10.1105/tpc.19.00150.

 

42. Macho A.P.* & Lozano-Duran R.* Molecular dialogues between viruses and receptor-like kinases in plants. Molecular Plant Pathology (2019), 20:1191-1195. doi: 10.1111/mpp.12812. (* Co-corresponding authors)

 

41. Lee E., Vanneste S., Pérez-Sancho J., Benitez-Fuente F., Strelau M., Macho A.P., Botella M.A., Friml J. and Rosado A. Ionic stress enhances ER-PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis. PNAS (2019) 116:1420-1429. https://doi.org/10.1073/pnas.1818099116

 

40. Zheng X., Li X., Wang B., Cheng D., Li Y., Li W., Huang M., Tan X., Zhao G., Song B., Macho A.P., Chen H., and Xie C. A systematic screen of conserved R. solanacearum effectors reveals the role of RipAB, a nuclear-localized effector that suppresses immune responses in potato. Molecular Plant Pathology (2019) 20:547-561. doi: 10.1111/mpp.12774

 

39. Yu G., Xian L., Sang Y. and Macho A.P. Cautionary notes on the use of Agrobacterium-mediated transient expression upon SGT1 silencing in Nicotiana benthamiana. New Phytologist (2019) 222:14-17. doi: 10.1111/nph.15601

 

38. Wang Y., Li Y., Rosas-Diaz T., Caceres-Moreno C., Lozano-Duran R., and Macho A.P. The IMMUNE-ASSOCIATED NUCLEOTIDE-BINDING 9 protein is a regulator of basal immunity in Arabidopsis thaliana. Molecular Plant-Microbe Interactions (2019) 32:65-75. doi.org/10.1094/MPMI-03-18-0062-R

 

37. Perraki A., DeFalco T., Derbyshire P., Avila J., Sere D., Sklenar J., Qi X., Stransfeld L., Schwessinger B., Kadota Y., Macho A.P., Jiang S., Couto D., Torii K.U., Menke F.L.H. and Zipfel C. Phosphocode-dependent functional dichotomy of the common co-receptor BAK1 in plant signaling. Nature (2018) 561:248-252.

 

36. Rufián J.S., Lucia A., Rueda-Blanco J., Zumaquero A., Guevara C.M., Ortiz-Martin I., Ruiz-Aldea G., Macho A.P., Beuzon C.R. and Ruiz-Albert J. Suppression of HopZ effector-triggered plant immunity in a natural pathosystem. Frontiers in Plant Science (2018), 14;9:977. doi.org/10.3389/fpls.2018.00977

 

35. Zhao Y., Zhang Z., Gao J., Wang P., Hu T., Wang Z., Hou Y.J., Wan Y., Liu W., Xie S., Lu T., Xue L., Liu Y, Macho A.P., Tao W.A., Bressan R.A., and Zhu J.K. Arabidopsis Duodecuple Mutant of PYL ABA Receptors Reveals PYL Repression of ABA-Independent SnRK2 Activity. Cell Reports (2018) 23: 3340 - 3351.e5

 

34. Wei Y., Caceres-Moreno C., Jimenez-Gongora T., Wang K., Sang Y., Lozano-Duran R. and Macho A.P. The Ralstonia solanacearum csp22 peptide, but not flagellin-derived peptides, is perceived by plants from the Solanaceae family. Plant Biotechnology Journal (2018),16:1349-1362.

 

33. Wei Y. #, Sang Y. # and Macho A.P. The Ralstonia solanacearum type III effector RipAY is phosphorylated in plant cells to modulate its enzymatic activity. Frontiers in Plant Science (2017) 8: 1899.

 

32. Jiang G., Wei Z., Xu J., Chen H., Zhang Y., She X., Macho A.P., Ding W. and Liao B. Bacterial Wilt in China: history, current status and future perspectives. Frontiers in Plant Science (2017) 8: 1549.

 

31. Sun Y.#, Wang K.#, Caceres-Moreno C.#, Jia W., Chen A., Zhang H., Liu R.* and Macho A.P.* Genome sequencing and analysis of Ralstonia solanacearum phylotype I strains FJAT-91, FJAT-452 and FJAT-462 isolated from tomato, eggplant, and chilli pepper in China. Standards in Genomic Sciences (2017) 12:29.

 

30. Puigvert M., Guarischi-Sosa R., Zuluaga P., Coll N.S., Macho A.P., Setubal J.C. and Valls M. Transcriptomes of Ralstonia solanacearum during root colonization of Solanum commersonii. Frontiers in Plant Science (2017) 8: 370.

 

29. Rufián J.S., Macho A.P., Corry D.S., Mansfield J.W., Ruiz-Albert J., Arnold D. and and Beuzón C.R. Confocal microscopy reveals in planta dynamic interactions between pathogenic, avirulent and non-pathogenic Pseudomonas syringae strains. Molecular Plant Pathology (2017), Final publication 2018 19:537-551.

 

28. Sang Y.Y. & Macho A.P. Analysis of PAMP-triggered ROS Burst in Plant Immunity. Methods in Molecular Biology (2017) 1578:143-153.

 

27. Sang Y., Wang Y., Ni H., Cazalé-Noel A.C., She Y., Peeters N. and Macho A.P. The Ralstonia solanacearum type-III effector RipAY targets plant redox regulators to suppress immune responses. Molecular Plant Pathology (2016). Final publication 2018 19: 129-142.

 

26. Rufián J.S., Sánchez-Romero M.A., López-Márquez D., Macho A.P., Mansfield J.W., Arnold D.L., Ruiz-Albert J., Casadesús J. and Beuzón C.R. Pseudomonas syringae differentiates into phenotypically distinct subpopulations during colonization of a plant host. Environmental Microbiology (2016) 18:3593-3605.

 

25. Couto D., Niebergall R., Liang X., Bücherl C.A., Sklenar J., Macho A.P., Ntoukakis V., Derbyshire P., Altenbach D., Maclean D., Robatzek S., Uhrig J., Menke F., Zhou J.M. and Zipfel C. The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1. PLoS Pathogens (2016) 12 (8).

 

24. Castro P.H., Couto D., Freitas S., Verde N., Macho A.P., Huguet S., Botella M.A., Ruiz-Albert J., Tavares R.M., Bejarano E.R. and Azevedo H. SUMO proteases ULP1c and ULP1d are required for development and osmotic stress responses in Arabidopsis thaliana. Plant Molecular Biology (2016) 92:143-59.

 

23. Rosas-Díaz T., Macho A.P., Beuzón C.R., Lozano-Durán R. and Bejarano E.R. The C2 Protein from the Geminivirus Tomato Yellow Leaf Curl Sardinia Virus Decreases Sensitivity to Jasmonates and Suppresses Jasmonate-Mediated Defences. Plants (2016) 5 (1), 8.

 

22. Macho A.P., Rufián J.S., Ruiz-Albert J. and Beuzón C.R. Competitive Index: Mixed Infection-Based Virulence Assays for Genetic Analysis in Pseudomonas syringae-Plant Interactions. Methods in Molecular Biology (2016) 1363:209-17.

 

21. Kadota Y., Macho A.P. and Zipfel C. Immunoprecipitation of Plasma Membrane Receptor-Like Kinases for Identification of Phosphorylation Sites and Associated Proteins. Methods in Molecular Biology (2016) 1363:133-44.

 

20. Macho A.P. Subversion of plant cellular functions by bacterial type-III effectors: beyond suppression of immunity. New Phytologist (2016) 210: 51–57. doi:10.1111/nph.13605

 

19. Rufián J.S., Lucía A., Macho A.P., Orozco-Navarrete B., Arroyo-Mateos M.A., Bejarano E.R., Beuzón C.R. and Ruiz-Albert J. Auto-acetylation on K289 is not essential for HopZ1a-mediated plant defense suppression. Frontiers in Microbiology (2015) 6: 684.

 

18. Macho A.P.*, Lozano-Durán R. and Zipfel C*. Importance of tyrosine phosphorylation in receptor kinase complexes. Trends in Plant Science (2015) 20: 269-272. (* Co-corresponding authors)

 

17. Macho A.P. & Zipfel C. Targeting of PRR-triggered immunity by type-III effectors from plant pathogenic bacteria. Current Opinion in Microbiology (2015) 23: 14–22.

 

16. Segonzac C., Macho A.P., Sanmartín M., Ntoukakis V., Sánchez-Serrano J.J. and Zipfel C. Negative control of BAK1 by Protein Phosphatase 2A during plant innate immunity. EMBO Journal (2014) 33: 2069-79.

 

15. Macho A.P. and Zipfel C. Plant PRRs and the activation of innate immune signaling. Molecular Cell (2014) 54: 263-272.

 

14. Macho A.P.*, Schwessinger, B.*, Ntoukakis V.*, Brutus A., Segonzac C., Roy S., Kadota Y., Oh M-H., Sklenar J., Derbyshire P., Lozano-Durán R., Gro Malinovsky F., Monaghan J., Menke F.L., Huber S.C., He S.Y. and Zipfel C. (* Co-first authors) A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation. Science (2014) 343: 1509-1512.

- Featured in The Faculty of 1000.

- Featured as Editor’s Choice in Science Signaling 7, ec86 (2014).

- Featured as a Research Highlight in Nature Chemical Biology 10, 324 (2014).

- Featured as a Leading Edge Select in Cell 157, 759-761 (2014).

 

13. Lozano-Durán R., Macho A.P., Boutrot F., Segonzac C., Somssich I. and Zipfel C. The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth. eLife (2013) 2:e00983.

 

12. Sun Y., Li L., Macho A.P., Han Z., Hu Z., Zipfel C., Zhou J.M. and Chai J.J. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science (2013) 342: 624-628.

 

11. Macho A.P., Boutrot F., Rathjen J.P. and Zipfel C. Aspartate Oxidase plays an important role in Arabidopsis stomatal immunity. Plant Physiology (2012) 159 (4): 1845-56.

 

10. Macho A.P.*, Zumaquero A.*, González-Plaza J.J., Ortiz-Martín I., Rufián J.S. and Beuzón C.R. Genetic analysis of the individual contribution to virulence of the type III effector inventory of Pseudomonas syringae pv. phaseolicola. (* Co-first authors) PLoS One (2012) 7 (4): e35871.

 

9. Macho A.P. and Beuzón, C.R. Insights into plant immunity signaling: The bacterial competitive index angle. Plant Signaling & Behavior (2010) 5, 1-4.

 

8. Zumaquero, A., Macho, A.P., Rufián, J.S. and Beuzón, C.R. Approaching the role of the type III effector inventory of Pseudomonas syringae pv. phaseolicola 1448a in the interaction with the plant. Journal of Bacteriology (2010) 192 (17): 4474-4488. Featured in The Faculty of 1000.

 

7. Macho A.P., Guevara C.M., Tornero P., Ruiz-Albert J. and Beuzón C.R. The Pseudomonas syringae type III effector HopZ1a suppresses effector-triggered immunity. New Phytologist (2010) 187 (4): 1018-1033.

 

6. Macho A.P.*, Guidot A.*, Barberis P., Beuzón C.R. and Genin S. A competitive index assay identifies several Ralstonia solanacearum Type III effector mutant strains with reduced fitness in host plants. (* Co-first authors) Molecular Plant-Microbe Interactions (2010) 23 (9): 1197–1205.

 

5. Ortiz-Martín I., Thwaites R., Macho A.P., Mansfield J.W. and Beuzón C.R. Positive regulation of the Hrp type III secretion system in Pseudomonas syringae pv. phaseolicola. Molecular Plant-Microbe Interactions (2010) 23 (5): 665-681.

 

4. Macho A.P., Ruiz-Albert J., Tornero P. and Beuzón C.R. Identification of new type III effectors and analysis of the plant response by competitive index. Molecular Plant Pathology (2009) 10 (1): 69-80.

 

3. Rodríguez-Moreno L., Pineda M., Soukupová J., Macho, A.P., Beuzón C.R., Barón M., Ramos C. Early detection of bean infection by Pseudomonas syringae in asymptomatic leaf areas using chlorophyll fluorescente imaging. Photosynthesis research (2008) 96 (1): 27-35.

 

2. Macho A.P., Zumaquero A., Ortiz-Martín I., and Beuzón C.R. Competitive index in mixed infections: a sensitive and accurate assay for the genetic analysis of Pseudomonas syringae-plant interactions. Molecular Plant Pathology (2007) 8 (4): 437–450.

 

1. Ortiz-Martín I., Macho A.P., Lambertsen L., Ramos C. and Beuzón C.R. Suicide vectors for antibiotic marker exchange and rapid generation of multiple knockout mutants by allelic exchange in Gram-negative bacteria. Journal of Microbiological Methods (2006) 67 (3): 395-407.