Personal Information

Principal Investigator, Academician of CAS
Researcher
Email:bhan@ncgr.ac.cn
Personal Web: http://www.ncgr.ac.cn


Research Direction

 


Research Unit

National Center for Gene Research,CAS

Bin Han

Personal Profile

Education   

1989-1992  

Ph.D. in Molecular Genetics The Sainsbury Laboratory/John Innes Centre, Norwich, UK 

1985-1988  

M. Phil. in Molecular Genetics Guangxi Agricultural College, Nanning, Guangxi, China  

1981-1985 B.S. in Biology 

Department of Biology, Anhui Normal University, Wuhu, Anhui, China 

Professional Experienc  

1998-present 

Professor National Center for Gene Research, Chinese Academy of Sciences, China 

1993-1998 

Postdoctoral Associate Department of Plant Sciences, Cambridge University, Cambridge, UK 

2001-2005 

Principle Investigator and member International Rice Genome Sequencing Project (IRGSP)   

2001-present 

Director National Center for Gene Research, Chinese Academy of Sciences, China   

2014-present 

Director Shanghai Institute of Plant Physiology and Ecology, SIBS, CAS, China  

2014-present 

Vice-presidents Chinese Society of Genetics & Chinese Society of Plant Biology 


Research Work

Prof. Han has been working on 1) genome sequencing and transcriptome studies, 2) sequencing-based genotyping and GWAS, 3) domestication studies, and 4) heterosis studies, using rice as crop of interest. 


Main Achievements

比较基因组和功能基因组研究
通过对籼、粳稻基因组的比较分析,系统地鉴定了籼粳之间序列多态性分布和频率。这些基因组水平上的比较分析对研究两个主要栽培稻品种的进化关系和遗传分化,以及今后基因组辅助的育种试验有指导意义。随着水稻基因组精确测序的完成,基因中心建立了功能基因组学研究平台和水稻转基因实验室,建设了一定规模的温室和试验田,使得国家对基因组学研究的投资得以持续、高效的利用,并最大程度地支撑水稻功能基因组学的研究。坚持高通量研究水稻基因功能,对一万多条籼稻全长cDNA进行了克隆,测序和分析。同时,通过比较基因组学研究了转座子突变可能对水稻基因功能分化产生的影响。结合基因家族的比较分析和表达组、转基因、过表达等功能分析,发现了一系列在水稻抗热,抗旱和抗盐生理过程中起重要作用的基因。促进水稻基因组研究与生理、发育、进化等学科以及农业应用的交叉,从而随着现代生物学快速的发展不断创新和深入。
建立以第二代测序仪为基础的高通量功能基因组研究技术体系
最近,新一代DNA测序方法的诞生标志着生命科学技术的又一次飞跃,为大规模发现和利用水稻遗传资源开辟了有效的新途径。基因中心及时利用高通量分析新技术,率先开发了高通量基因型鉴定的方法。这种新方法集低时耗、高性价比、高密度和高精度等众多优点于一身。采用这一方法完成了一组籼、粳稻重组自交系的基因型鉴定,与目前广泛应用的分子标记相比,新方法快20倍,在精度上提高了35倍。分析这种高分辨的遗传重组图谱直接将控制株高的著名“绿色革命”基因精确定位到了100kb的范围内。
刚刚启动的研究课题定位于完成对数百个代表我国水稻种质资源的栽培品种进行全基因组再测序。迅速、大量地鉴定覆盖全基因组的单核苷酸多态性,全面深入掌握我国水稻资源的遗传多样性。基于这一研究系统,全国水稻研究者可以对重要农业性状进行关联作图分析,并大规模、高效地定位、克隆控制各种重要性状的基因,探索基因组辅助的分子育种手段。其方法可以推广到对其它作物的基础和应用研究中,进一步保障我国粮食安全。同时尝试的高通量功能基因组研究的新技术还包括表达组和染色质免疫沉淀测序。目前已经启动了对水稻籼、粳两个亚种主要品种的高通量转录组测序及功能研究;另外,还将开展对其它植物(能源植物)的高通量基因组和转录组测序和研究,从而将最初以测序为目标的基因组学发展到以测序为手段,支撑大规模、高通量研究基因的结构基因组、比较基因组和功能基因组学研究的新阶段。不断推进和利用基因组学的思想和方法,系统、深入地研究遗传学、植物学和水稻生物学中基础和应用的科学问题。


Publications

1. Changsheng Wang, Shican Tang, Qilin Zhan, …., Jianfu Zhang, Huaan Xie, Xuehui Huang & Bin Han*. Dissecting a heterotic gene through GradedPool-Seq mapping informs a rice-improvement strategy. Nature Communicationsvolume 10, Article number: 2982 (2019) 

2. Junyi Gong, Jiashun Miao, Yan Zhao, Qiang Zhao, Qi Feng, Qilin Zhan, Benyi Cheng, Junhui Xia, Xuehui Huang4, Shihua Yang, and Bin Han*.Dissecting the Genetic Basis of Grain Shape and Chalkiness Traits in Hybrid Rice Using Multiple Collaborative Populations. Molecular Plant 2017; 10(10):1353-1356 

3. Xuehui Huang, Shihua Yang, Junyi Gong, Qiang Zhao, Qi Feng, Qilin Zhan, Yan Zhao, Wenjun Li, Benyi Cheng, Junhui Xia, Neng Chen, Tao Huang, Lei Zhang, Danlin Fan, Jiaying Chen, Congcong Zhou, Yiqi Lu, Qijun Weng & Bin Han*.Genomic architecture of heterosis for yield traits in rice. Nature 2016; doi:10.1038/nature19760. 

4. Huang XH, Yang SH, Gong JY, Zhao Y, Feng Q, Gong H, Li WJ, Zhan QL, Cheng BY, Xia JH, Chen N, Hao ZN, Liu HY, Zhu CR, Huang T, Zhao Q, Zhang L, Fan DL, Zhou CC, Lu YQ, Weng QJ, Wang Z-X, Li JY, Han, B* Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Molecular Plant 2015; DOI: http://dx.doi.org/10.1016/j.molp.2015.01.010. 

5. Huang X, Kurata N, Wei X, Wang Z-X, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B*. A map of rice genome variation reveals the origin of cultivated rice. Nature 2012; 490: 497-501.  

6. Zhou, Y., Lu,D., Li, C., Luo, J., Zhu, B., Zhu, J., Shangguan, Y., Wang, Z., Sang, T., Zhou, B., & Han, B*. Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION1. Plant Cell 2012, 24, 1034-1048.  

7. Huang, X., Zhao, Y., Wei, X., Li, C., Wang, A., Zhao, Q…., Huang, T., Lu, T., Feng, Q., Qian, Q., Li, J., & Han, B*. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genet. 2012, 44, 32-39.  

8. Huang, X., Wei, X., Sang, T., Zhao, Q., Feng, Q., ., Li, W., Lin, Z., Buckler, E.S., Qian, Q., Zhang, Q., Li, J., & Han, B*. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genet. 2010, 42, 961-967. 

9. International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 2005, 436, 793-800. (Bin Han is one of the 10 principal investigators of this joint paper). 

10. Feng, Q., Zhang, Y.J., …. Hong, G.F., Xue, Y.B. & Han, B*. Sequence and analysis of rice chromosome 4. Nature 2002, 420, 336-340.