Personal Information

Principal Investigator
Researcher
Email:jmgong@sibs.ac.cn
Personal Web:


Research Direction

 


Research Unit

National Key Laboratory of Plant Molecular Genetics

Jiming Gong

Personal Profile

Work experience 

2005.12-present. CAS center for Excellence in molecular plant sciences/ Institute of Plant Physiology & Ecology, Principle Investigator 

2000.9-2005.9.  University of California San Diego, Postdoctoral Research associate   

Education 

1995.9-2000.7   Institute of Genetics CAS, PhD 

1991.9-1995.7   Beijing Normal University, Biology 


Research Work

The fast growing population poses an increasing burden to natural resources and the environment. Plants are primary producers in the food chain. Uptake and allocation of mineral nutrients and toxic elements in plants determine plant growth, yield and food quality. Over the past decades, doubling of agricultural production worldwide has been associated with a 7-fold increase in the use of nitrogen (N) fertilizers, which to some extent addressed the food security concern, though resulted in an increasing economic burden to farmers and more importantly a severe ecological consequence, including eutrophication and heavy metal pollution. 

Increasing nitrogen use efficiency (NUE) has been proposed to tackle these challenges. NUE can be divided into two processes: uptake efficiency and utilization efficiency, and plant life cycle correspondingly is divided into vegetative and N remobilization phase. In vegetative phase, young developing tissues behave as sink organs for the assimilation of inorganic N taken up before flowering. N remobilization stage starts generally after flowering, where shoots and/or roots start to behave as source organs to export nitrogen to reproductive and storage organs. In Arabidopsis, more than 90% nitrogen in senescence leaves is subject to remobilization. N remobilization also occurs when exposed to environmental stresses and was proposed as a nutrient safeguard strategy. These observations suggest that N remobilization represents an important NUE mechanism evolved. 

Heavy metal pollution affects both yield and quality of agricultural food production. An affordable solution to this problem could be breeding remediation-crops serving dual roles in both phytoremediation and reducing metal accumulation in food chains, while both require a better understanding of metal transport, allocation and detoxification in plants. Thus further study using both model plant and hyperaccumulators could greatly contribute to either phytoremediation of heavy metals or reducing metal accumulation in food chains. 

Based on these observations, our lab focuses on the molecular mechanisms of mineral transport and distribution in plants, and its interaction with abiotic stresses. Specifically, we are interested in (1) nitrogen use efficiency (NUE): SINAR (Stress-initiated nitrate allocation to roots) represents an ideal physiological process to study the interaction between nitrogen and carbon assimilation exposed to changing environment. We have been working on this process for years and made significant progress.  (2) Cadmium accumulation and detoxification: Cadmium is a nonessential toxic element derived from modern industry and fertilization. Answers to how cadmium enters and accumulates in plant harvestable parts would greatly facilitate phytoremediation. The resulted knowledge could also be applied to breeding remediation -crops.  

Our research will contribute to (1) the basic theory of mineral uptake, allocation, turnover and subsequent remobilization in plants, (2) nutrient use efficiency (NUE) that helps to reduce fertilizer use and pollution, (3) phytoremediation of elemental pollutants. The research will consequently contribute to a sustainable agriculture. 


Main Achievements

1)揭示了SINAR(Stress-initiated Nitrate Allocation to Roots)的分子调控基础及生物学意义
碳(光合作用)氮(矿质营养)代谢的偶联和解偶联是植物生理学中一个经典科学问题,但是其分子调控基础一直不清楚。有研究认为:作为陆生植物最主要氮源的硝态氮一旦进入植物体后,大多会通过长途转运到植物的地上部位,在那里利用光合作用及光呼吸提供的碳骨架、能量和还原力,将无机氮转化成有机氮。由于这种氮同化的方式能够将碳、氮代谢直接偶联起来,具有能量进化优势,因此成为大多数绿色植物的优先选择(Smirnoff and Stewart,1985)。但一个重要的生理现象也反复被生理学家们所观察到:逆境胁迫如低温、弱光、盐害、重金属等都会导致更多硝酸根向根部分配,这一明显违反能量进化优势原则的“硝酸根逆向再分配”过程的生物学意义是什么?其调节机理如何?一个简单而较有影响力的假说是:逆境如镉胁迫导致蒸腾流减弱,从而被动降低了硝酸根向地上部位的运输,间接导致了硝酸根在根部的积累(Hernandez et al., 1997)。该假说的核心是:硝酸根逆向再分配只是一种被动抑制过程的后果。
我们的研究则表明这一过程受到主动的调控,并发现NRT1.8(硝酸根木质部卸载)和 NRT1.5(硝酸根木质部装载)作为两个重要的分子开关,通过精细的负向协同表达调节着硝酸根在植物地上和地下部位间的分配,并调控植物对重金属Cd的耐受性(Li et al., 2010, Plant Cell 22:1633-)。文章发表后,在学术界引起广泛关注和高度评价。Journal of Molecular Cell Biology发表了专论文章 “Keeping Nitrate in the Roots: An Unexpected Requirement for Cadmium Tolerance in Plants”。在Faculty of 1000 中,我们的成果在发表后被多位权威专家点评推荐,而且被收录进国际植物营养权威教科书Marschner’s Mineral Nutrition of Higher Plants (第三版,P138)。迄今论文已经被引用超过170次(Web of Science),被标记为“高被引论文”(领域内前1%最优秀论文)。进一步的研究发现NRT1.8和NRT1.5调控的硝酸根再分配和碳氮代谢的解偶联是植物面对逆境胁迫的一个共通机制(Plant Physiol 2012a, 159:1582-),而且植物通过乙烯/茉莉酸-NRT1.5/NRT1.8功能模块整合多种逆境信号与营养信号,从而精细调控植物在逆境耐受和生长之间保持动态平衡(Plant Cell 2014, 26:3984-)。最近,我们更发现碳氮代谢解耦联导致的后果之一是植物叶片在缺硝酸根时的早衰,从而揭示出NRT1.5可能作为重要信号的调节器(Mol Plant 2016, 9:461-)。

2) 系统阐述液泡区隔容量(VSC)与离子长途转运的关系
植物成熟组织细胞的液泡可以达到细胞总体积的80%,是储存、区隔金属元素的主要细胞器。然而液泡通过储存或释放这些金属元素对调节它们在植物体内的长途转运的功能一直被人们忽视。我们早先的研究表明当植物螯合肽(Phytochelatins,PCs)在根中大量合成时,并不如预期那样有更多的Cd滞留根部,而是大量向地上部转运,预示PCs调控的Cd的液泡区隔容量(Vacuolar sequestration capacity, VSC)可能与其长途转运具有某种关联(PNAS 2003, 100:10118-)。进一步的研究通过将介导PCs-Cd螯合物向液泡转运的转运蛋白SpHMT1定向表达在植物的根部,有效阻控了包括Cd在内的多种重金属向地上部位的长途转运(Plant Physiol 2012b, 158:1779-)。因此,我们应邀撰写了一篇综述,系统阐释了VSC调控植物体内元素定向分配的学术思想(Invited review: Front in Plant Sci 2014, 5:19)。该思想被越来越多的来自水稻中Cd高积累调控等工作验证。我们实验室发现水稻旗叶中调控液泡Fe/Zn分隔的OsVIT1/2基因通过调控VSC,从而调节Fe/Zn在源(旗叶)库(种子)间的再分配(Plant J, 2012, 72:400-);最近在超积累植物伴矿景天中也观察到根部VSC调控与Cd向地上部超积累的相关关系 (Plant Cell Environ 2017, doi: 10.1111/pce.12929),进一步表明VSC调控与离子定向运输是一个可应用于实际生产的普遍性规律。

3) 在发掘中国特有超积累植物并解析其分子基础方面取得重要成果
超积累植物由于能高效吸收并在地上部位积累、耐受极高浓度的重金属而成为研究植物对矿质元素的转运与耐受的模式物种。对其超积累和超耐受重金属机理的解析能够为植物修复技术的发展以及农作物的定向改良提供理论基础和基因资源。然而,先前的研究几乎局限于两种欧洲的十字花科超积累植物,其超积累机制是否适用于欧洲以外的生境仍不得而知。伴矿景天是近年在华东地区发现的一种景天科Cd/Zn超积累新物种,是我国特有的种质资源。经过多年努力,我们首次从系统生物学角度证明了细胞壁是伴矿景天地上部储存镉的主要部位,而且阐明了伴矿景天细胞壁果胶成分中含有较高比例的羧基可能是其细胞壁高效率螯合镉的主要原因(Mol Plant 2016, doi: 10.1016/j.molp.2016.12.007);克隆了SpMTL基因,并提出关键蛋白在一级结构上的改变以及所导致的功能增强可能代表了超积累植物适应环境的一种普适机制(Plant Cell Environ, 2017, doi: 10.1111/pce.12929);这些研究结果促进了人们更全面系统地了解超积累植物富集和耐受重金属的机理。


Publications